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2Global Mobile Device and Connection Growth

Source: Cisco Annual Internet Report, 2018–2023

⚫ Radio spectrum is getting seriously congested → interference among devices

⚫ More wireless traffic is coming from indoor devices than from outdoor ones



3Optical Wireless Communication (OWC) – basic options

[Dominic O’Brien, IPS Summer Topicals 2016]

⚫ Visible Light Communication with wide-coverage beams (<1Gbit/s, shared) 

⚫ Beam-steered IR communication (>10Gbit/s, unshared)

⚫ User environment → true mass deployment, requires scalable manufacturing, 

power efficiency, cost-effectiveness → photonic integration of OWC functions



4USP-s of Indoor Beam-steered OWC vs. WiFi, LiFi

WiFi, LiFi

Shared capacity 
⚫ bitrate  no. devices 

restricted 
⚫ privacy issues
⚫ EMI sensitive (WiFi)

Beam-steered OWC
No capacity sharing 
⚫ much higher user 

density
⚫ much higher 

bitrate/device
⚫ personalized, 

enhanced privacy
⚫ no EMI disturbances
⚫ high energy efficiency, 

signal only where and 
when needed
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5Challenges with Indoor Beam-steered OWC 

➔ User localization3

➔ Bidirectionality4

2 ➔ OWC Receiver

1 ➔ OWC Transmitter



62D Beam Steering for indoors

Requirements:
• Simultaneously steering 

• 2D Steering

• Large channel BW 

• Fast steering speed

• Large coverage area (FoR)

• Compact & low power consumption

Solutions reported:
• Spatial Light Modulator, 512512 pixels, 256 phase levels1

- Max. steering angle  3, with angle magnifier:  60

- 3  37.4Gbit/s = 112Gbit/s

• MEMS mirror2

- Steering range >20

- Free-space link 2m, max. coverage area 113cm,10Gbit/s per beam

• Crossed gratings3

- Fully passive device, wavelength based steering

- Angular tuning over 5.612.7, Multiple beam capable

1. [A. Gomez et al., PTL Feb. 2014 (Oxford Univ.)]

2. [Ke Wang et al., OFC2015 (Univ. Melbourne)]
3. [Koonen et al, US Pat. 9246589, d.d. Jan. 20, 2012]
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European Research Council   2D beam Steering with High Port Count

Arrayed Waveguide Grating Router

[Koonen et al, Sum. Top. 2016, JLT Oct. 2018]

lens

beams1, 2,..., N

2D 

fiber 

array

MM

AWGR

1N

x

y

1D-to-2D 

interposer

input 

fiber
N

1

128 fibers array

+ f=50mm lens objective

+ (C+L-) AWGR

⚫ Fully passive device

⚫ Deploys only wavelength 

tuning
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European Research Council   

Indoor Free-space Beam-steered Optical Communication

System concept:

⚫ pencil beams

→ high capacity, no sharing, 

long reach, private

⚫ IR >1400nm → eye safe,

Pbeam up to 10mW

⚫ passive beam steerer 

→ no local powering, easily 

scalable

⚫ -controlled 2D steering 

→ embedded control channel

⚫ Scalable to many beams, 

just add -s

⚫ target: 

10Gbit/s per beam

[Koonen et al, MWP2014]

[Mekonnen et al., JLT May 2018, JLT Oct 2018]

CCC
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Requirements:

⚫ Large bandwidth

⚫ Large aperture

⚫ Wide Field-of-View

⚫ Simple

⚫ Compact

⚫ Low power consumption

Solutions reported:

⚫ Non-imaging optics, such as compound parabolic concentrator

⚫ Angular diversity receiver (multiple PD-s and TIA-s)

⚫ PIC with  large/multiple surface grating couplers + waveguide-fed UTC-PD

⚫ Wavelength conversion in phosphorent slab waveguide or fibre

⚫ 2D photodiode matrix + single TIA (first reported at ECOC2020* ; with 4 

quad PD-s) - PATENTED

* Koonen et al, “Novel broadband OWC receiver with large aperture 

and wide Field-of-View”, ECOC2020, paper Tu2G.4

OWC Receiver Design

Etendue dG of light crossing dS:

dG = n2 dS cos d

[https://en.wikipedia.org/wiki/Etendue]

Law of conservation of Etendue

➢ Etendue is conserved as light 
travels through free space
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2D matrix of photodiodes applied in transimpedance amplifier

Rd Cd

is(t) id(t)

Rs

Equivalent circuit of single photodiode

OWC Receiver with 2D Matrix of Photodiodes

⚫ 2D matrix of photodiodes (i.s.o. single large-area PD)

⚫ Single pre-amplifier 

ቤ𝑍𝑇 𝜔 = 0 =
𝑣𝑜𝑢𝑡(𝑡)

𝑖𝑡𝑜𝑡(𝑡) 𝜔=0

=
𝐴

1 + 𝐴
𝑅𝑡

𝜔−3𝑑𝐵 =
1+𝐴

𝐶𝑑∙𝑅𝑡
if  𝑍𝑡𝑜𝑡 ≈

1

𝑗𝜔 𝐶𝑑

TIA characteristics:

→ BW limit due to PD capacitance

Pat. PCT/EP2020/080594 (filed 30 Oct. 2020)
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OWC Receiver - Frequency Characteristics

with a square MM matrix 

of photodiodes in a TIA the 

same bandwidth is 

achieved as with a single 

photodiode, whereas 

active area is M2 times 

larger, and output signal 

is M times larger.



𝜔−3𝑑𝐵 ≈
𝑀

𝐾
∙
1 + 𝐴

𝐶𝑑 ∙ 𝑅𝑡
𝑍𝑇,𝑟𝑒𝑓 𝜔 = 0 =

𝑣𝑜(𝑡)

ത𝑎 ∙ 𝑅 ∙ 𝑃(𝑡)
≈ 𝐾 ∙

𝐴

1 + 𝐴
∙ 𝑅𝑡

single PD

ത𝑎P(t) : average power received per PD
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f



lens  D1

PD  D2

x



spot  Dc

Capturing the Beam by the Photodiode Matrix

⚫ ideal case : uniform beam, thin aberration-free lens

Defocusing factor p=x/f: spot size Dc = p D1 > PD dia. D2

With ideal thin lens D1 and uniform beam D0 :

⚫ Coupling fraction T of beam’s power into all photodiodes 

(matrix fill factor )

𝑇 = cos 𝛼 ∙ 𝜂 ∙
𝐷2

𝑝 𝐷0

2

for p > D2 / D1 

→ decreases if p increases

𝑇 = cos 𝛼 ∙ 𝜂 ∙
𝐷1

𝐷0

2

for 0 < p  D2 / D1

⚫ FoV half angle max : 

tan 𝛼𝑚𝑎𝑥 =
𝑝∙𝐷1− 𝐷2

2 𝑓 1−𝑝

→ increases if p increases
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44 PD matrix

(made by Albis Optoelectronics)

OWC receiver with 

differential outputs

OWC receiver with 2” Fresnel 

lens

adapted media converter with 

RJ45 output (→ ‘OWC dongle’)

OWC Broadband Receiver Module

BW-3dB = 670MHz

Frequency char.

• 1.3mm x 1.3mm

• Fill-factor: 20%

Note: BW-3dB mainly limited by the TIA 

used which has a BW-3dB  of 700MHz.
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<10-9 2.2×10-7

1.2×10-1  

(crosstalk with 
a neighbour)

2.2×10-6 1.8×10-7 <10-9

<10-9 <10-9 <10-9 <10-9 <10-9

<10-9 <10-9

OWC Broadband Receiver Performance

BER for both single-ended and 

differential receiver outputs

FoV measurements at 1Gbit/s

→ error-free within a half-angle 

FoV=10 from center cell
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15User Localization using Retro Reflector foil - Downstream
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16Bidirectional OWC - Upstream
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17User Localization using Retro Reflector foil - Upstream

ceiling

lens

F

v1=f1 (1-p1)


US Tx

fiber

US Rx



F

d

x

y

x



f1

beam 
 Dbeam2

xy translator

xc

lens axis

control

US Rx aperture

annular RR ring
(inner  D1 , outer  D2 ) 

x

y

beam spot Dbeam2

1. Course scanning to detect the RR annular ring.

2. Fine scanning when detecting a reflected signal

from RR. Scanning should be performed over at 

least the whole RR annular ring.

➔ Generate measurement matrix

1. Determine center using center of gravity algorithm.

𝐶𝑜𝐺 =  
𝑥𝐶𝑜𝐺
𝑦𝐶𝑜𝐺

 =
1

𝑀
 𝑚𝑖

𝑁

𝑖−1

  
𝑥𝑖
𝑦𝑖
  with  𝑀 =  𝑚𝑖

𝑁

𝑖=1

   

Downstream 
Rx.

Downstream 
Tx.
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Stepper moptors for xy translation

18

Complete Lab demonstrator @ TU/e 

⚫ Transfer of high-def video 

streams at GbE speed

⚫ Two PRA-s + MEMS switch 

enabling path diversity for 

avoiding LoS blocking

⚫ Up to 128 beams, 10cm

⚫ FoV: 10 deg

fibers

PRA 1

Downstream

receiver

CCC tunable 

transmitters

PRA 2

video

sent

video

received

control

laptop

7 cells captured with

IR camera at 2.5m

GbE receiver, streaming 

video to a laptop/PC
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transmitter
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lens
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
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
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19Possible End Users

⚫ Business meeting rooms

⚫ Class rooms

⚫ Airport lounges, gates 

⚫ Public transport, in-flight/in-vehicle entertainment

⚫ Hospitals, IC rooms

⚫ Industry 4.0 manufacturing halls, warehouses

⚫ Exhibition halls

⚫ Data centers

⚫ Residential home: fast internet connectivity, video delivery, …

USP-s

• dense ultra-high capacity

• high power efficiency

• high privacy

• easily scalable to many 

users

• very low latency
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Concluding Remarks

⚫ Optical wireless communication systems can solve the imminent congestion 

of radio-based wireless systems: they offer huge amounts of extra spectrum, 

and can offload much of their traffic

⚫ OWC systems offer enhanced privacy, and reliable operation in EMI-polluted 

environments (e.g., in Industry 4.0)

⚫ Beam-steered OWC systems enable high-density delivery of broadband 

services and reduce energy consumption

⚫ (Hybrid) photonic integration is needed for realizing cost-effective, compact, 

energy-efficient high-performance OWC systems. So far using off-the-shelf 

components → bulky devices

✓ Compactness

✓ Energy-efficiency

✓ Cost-effectiveness

✓ Mass deployment
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Thank you for your attention!  

Questions, comments, …?


